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The B.1.617 variant emerged in the Indian state of Maharashtra in late 2020 and has spread 

throughout India and to at least 40 countries. There have been fears that two key mutations 

seen in the receptor binding domain L452R and E484Q would have additive effects on 

evasion of neutralising antibodies. Here we delineate the phylogenetics of B.1.617 and spike 

mutation frequencies, in the context of others bearing L452R. The defining mutations in 

B.1.617.1 spike are L452R and E484Q in the RBD that interacts with ACE2 and is the target of 

neutralising antibodies. All B.1.617 viruses have the P681R mutation in the polybasic 

cleavage site region in spike. We report that B.1.617.1 spike bearing L452R, E484Q and 

P681R mediates entry into cells with slightly reduced efficiency compared to Wuhan-1. This 

spike confers modestly reduced sensitivity to BNT162b2 mRNA vaccine-elicited antibodies 

that is similar in magnitude to the loss of sensitivity conferred by L452R or E484Q alone. 

Furthermore we show that the P681R mutation significantly augments syncytium formation 

upon the B.1.617.1 spike protein. These data demonstrate that reduced sensitivity to 

vaccine elicited neutralising antibodies likely contributes to vaccine breakthrough observed 

in India, and that polybasic cleavage site mutations potentially contribute to 

infectivity/transmissibility.  

 

 

Introduction 

Global control of the SARS-CoV-2 pandemic has yet to be realised despite availability of 

highly effective vaccines1,2. Emergence of new variants with multiple mutations is likely the 

result of chronic infections within individuals who are immune compromised3. New variant 

emergence and transmission has coincided with rollout of vaccines, potentially threatening 

their success in controlling the pandemic4,5.   

 

India experienced a wave of infections in mid 2020 and was controlled by a nationwide 

lockdown. Since easing of restrictions, India has seen expansion in cases of COVID-19 since 

March 2021. The B.1.1.7 variant has been growing in the north of the country and is known 

to be more transmissible than previous viruses bearing the D614G spike mutation6. The 

B.1.617 variant emerged in the state of Maharashtra in late 2020/early 20217 and has 

spread throughout India and to at least 40 countries. It was labelled initially as a double 

mutant since two of the mutations L452R and E484Q were matched to an in-house 
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screening database for mutations leading to probable evasion of antibodies and/or being 

linked to increased transmissibility. 

 

The defining mutations in spike are L452R and E484Q in the critical receptor binding domain 

that interacts with ACE28. L452R was observed in the California variant and is associated 

with increase in viral load and around 20% increased transmissibility 9. It was also associated 

with increased ACE2 binding, increased infectivity10 and 3-6 fold loss of neutralisation 

sensitivity to vaccine elicited sera in experiments with pseudotyped virus (PV) particles10,11. 

Little is known about E484Q, though E484K is a defining feature of two VOCs, B.1.35112 and 

P.113. E484K is known to confer around 10 fold loss of sensitivity to neutralising antibodies 

in vaccine and convalescent sera14,15. In contrast to L452R, E484Q has not been observed in 

transmissible variants.  

 

Here we demonstrate three lineages of B.1.617, all bearing the L452R mutation. We report 

key differences in amino acids between sub-lineages and focus on B.1.617.1 bearing three 

key mutations: L452R, E484Q and P681R. We report an outbreak of infections dominated by 

B.1.617 viruses in fully vaccinated HCWs. In vitro, we find modestly reduced sensitivity of 

the ancestral B.1.617.1 spike protein to BNT162b2 mRNA vaccine-elicited antibodies that is 

similar in magnitude to the loss of sensitivity conferred by L452R or E484Q alone. 

Furthermore we show that the P681R mutation significantly augments syncytium formation 

upon the B.1.617.1 spike protein, potentially contributing to increased pathogenesis 

observed in hamsters16 and high growth rates observed in humans. 

 

Results 

Three B.1.617 sub-lineages are characterised by L452R and P681R in spike 

We downloaded whole genome SARS-CoV-2 sequences (excluding low-quality or >5% N 

regions) containing L452R from GISAID, subsampled and inferred a maximum likelihood 

phylogenetic tree (Figure 1A). We annotated the sequences based on the accompanying 

mutations and observed that B.1.617.1 has three key spike mutations L452R, E484Q and 

P681R, whereas B.1.617.2 is characterised by L452R, T478K and P681R. This likely signifies 

loss of E484Q in B.1.617.2 given that B.1.617.3 also bears E484Q in 90% of sequences 

(Figure 1). The number of sequenced isolates of B.1.617.1 and B.1.617.2 has been steadily 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.08.443253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.08.443253
http://creativecommons.org/licenses/by/4.0/


increasing both in India (Figure 1B) and in the UK (Figure 1C), though with the caveat of very 

low sequencing of prevalent cases. There is already significant diversity in B.1.617.1 as 

demonstrated in Figure 1D. 

 

B1.617 associated vaccine breakthrough in health care workers  

Vaccination of health care workers (HCW) in Delhi was started in early 2021, with the 

ChdOx-1 vaccine. Surveillance has suggested B.1.1.7 dominance in the Delhi area during 

early 2021 (Figure 2A), with growth of B.1.617 since late March 2021. During the wave of 

infections during March and April an outbreak of SARS-CoV-2 was confirmed in 30 

vaccinated staff members at a single tertiary centre (age range 27-77 years). Short-read 

sequencing17 revealed the majority were B.1.617.2 with a range of other B lineage viruses 

including B.1.1.7 (Figure 2B). Further analysis of pairwise differences demonstrated a group 

of highly related, and in some cases, genetically indistinct sequences, differing by only one 

or two nucleotides (Figure 2C). Maximum likelihood phylogenetic analysis of consensus 

sequences from symptomatic HCW breakthrough infections revealed that the twelve 

B.1.617.2 viruses were almost identical and were sampled within one or two days of each 

other.  These data are consistent with a single transmission from an infected individual 

(Figure 2D). In approximately the same timeframe, numerous other lineages of virus, 

including the B.1.1.7 variant were detected in the same hospital. Importantly no severe 

cases were documented in this event. To put the outbreak sequences into context, a further 

phylogeny was inferred with a random subsample of Indian B.1.617+ sequences 

downloaded from GISAID (Figure 2E). 

 

B.1.617.1 Spike confers partial evasion of BNT162b2 vaccine elicited antibodies  

Spike mutations L452R and E484Q are in the receptor binding domain that not only binds 

ACE28, but is a target for neutralising antibodies18,19 (Figure 3A-D). We tested the 

neutralisation sensitivity of B.1.617.1 Spike bearing L452R, E484Q and P681R using a 

previously reported pseudotyped virus (PV) system with HIV-1 particles bearing SARS-CoV-2 

spike (Figure 3E). PV testing against neutralising antibodies has been shown to be highly 

correlated with live virus systems20. We tested nine stored sera from Pfizer BNT162b2 

vaccinees against a range of spike mutation bearing PV. As expected E484K conferred a ten-

fold reduction in neutralisation by vaccine sera, and E484Q had a slightly milder yet 
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significant impact. When E484Q and L452R were combined, there was a statistically 

significant loss of sensitivity as compared to wild type, but the fold change was similar to 

that observed with each mutation individually with no evidence for an additive effect. We 

found similar relationships when we tested our mutants convalescent plasma  

 

 

P681R confers increased syncytium formation capability on B.1.617.1 spike  

Spike is known to mediate cell entry via interaction with ACE2 and TMPRSS221 and is a major 

determinant of viral infectivity. Given that that B.1.617.1 does not appear to be highly 

immune evasive, we hypothesised that it may be have higher infectivity. We tested single 

round viral entry using the PV system, infecting target 293T cells over-expressing ACE2 and 

TMPRSS2, as well as Calu-3 lung cells expressing endogenous levels of ACE2 and TMPRSS2 

(Supplementary figure 1). We observed similar entry efficiency across mutants, all of which 

appeared lower than the Wuhan-1 D614G wild type (Figure 4). 

 

SARS-CoV-2 infection in clinically relevant cells is TMPRSS2 dependent and requires fusion at 

the plasma membrane, potentially to avoid restriction factors in endosomes22. The plasma 

membrane route of entry, and indeed transmissibility in animal models, is critically 

dependent on the polybasic cleavage site (PBCS) between S1 and S222,23. Mutations at P681 

in the PBCS have been observed in multiple SARS-CoV-2 lineages, most notably in the 

B.1.1.7 variant that likely emerged in the UK.  

 

We previously showed that B.1.1.7 spike, bearing P681H, had significantly higher fusogenic 

potential than a D614G Wuhan-1 virus24. We therefore tested a series of mutations in 

B.1.617 spike using a split GFP system. We transfected spike bearing plasmids into donor 

cells and co-cultured them with acceptor cells (Figure 5).  We found no significant 

differences for the single mutants tested L452R, E484Q/K, or indeed the double mutant 

L452R+E484Q. However, the triple mutant with P681R demonstrated higher fusion activity 

and syncytium formation, mediated specifically by P681R (Figure 5, supplementary figure 2).  

 

Discussion 
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Here we have shown that B.1.617 spike bearing L452R, E484Q and P681R has modest ability 

to avoid neutralising antibodies elicited by BNT162b2 vaccination. The fold reduction for the 

two RBD mutations L452R and E484Q was no greater than the individual mutations alone, 

arguing against use of the term ‘double mutant’.  The loss of neutralisation of B.1.617 has 

possibly contributed to an epidemic wave in India where background infection to the 

Wuhan-1 D614G in 2020 was between 20-50%25. Despite in vitro data showing only small 

loss of neutralisation against B.1.617 with the Covaxin vaccine26, here we also show vaccine 

breakthrough in health care workers at a single tertiary hospital who were fully vaccinated 

with ChAdOx-1 vaccine (adenovirus vectored). These infections were predominantly 

B.1.617, with a mix of other lineages bearing D614G in spike. The dominance of B.1.617 in 

this outbreak could be explained by prevalence of this lineage in community infection or 

reflect transmission between HCWs. The data nonetheless raise the possibility of a 

transmission advantage of B.1.617 in vaccinated individuals.  

 

We measured spike mediated entry into target cell lines exogenously or endogenously 

expressing ACE2 and TMPRSS2 receptors. The E484K, L452R and P681R mutant had reduced 

entry efficiency relative to wild type. A recent report using a spike B.1.617 with a larger set 

of mutations found variable entry efficiency relative to wild type across cell types27.  

 

Virus infectivity and fusogenicity mediated by the PBCS is a key determinant of 

pathogenicity and transmissibility22,28 and there are indications that giant cells/syncitia 

formation are associated with fatal disease29. We find that P681R is associated with 

enhanced capacity to induce cell-cell fusion and syncitia formation, and that P681R alone 

confers this ability on the B.1.617.1 spike with RBD mutations L452R and E484Q.   

 

It is unclear whether B.1.617 variants will prove more transmissible than B.1.1.7, also 

circulating in India and now globally dominant. In the absence of published data on 

transmissibility of B.1.617 we predict that this variant will have a transmission advantage 

relative to Wuhan-1 with D614G in individuals with pre-existing immunity from 

vaccines/natural infection as well as in settings where there is low vaccine coverage and low 

prior exposure. Lower protection against B.1.351, the variant with least sensitivity to 

neutralising antibodies, has been demonstrated for at least three vaccines2,30-32.  However, 
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progression to severe disease and death was low in all studies. Therefore, at population 

scale, extensive vaccination will likely protect against moderate to severe disease and will 

reduce transmission of B.1.617 given the in vitro neutralisation data we and others have 

presented. 

 

Methods 

Phylogenetic Analysis 

All sequences excluding low-quality sequences (>5% N regions) with the L452R mutation 

were downloaded from https://gisaid.org 33 on the 4th May 2021 and manually aligned to 

reference strain MN908947.3 with mafft v4.475 34 using the --keeplength --addfragments 

option. Sequences were de-duplicated using bbtools dedupe.sh. Due to the high proportion 

of USA-centric sequences containing L452R, all USA sequences were extracted and saved to 

a separate fasta file. A random subset of 400 global sequences (excluding USA), and 100 

USA sequences were then selected with seqtk and concatenated. Sequence lineages were 

assigned to all sequences with pangolin v2.4 (https://github.com/cov-lineages/pangolin) 

and pangolearn (04/05/2021). A secondary set of 30 sequences were donated by 

collaborators from a hospital outbreak in Delhi. Upon examination, three were discarded 

due to >50% N regions in the genomes. A further three were excluded from analysis as they 

could not reliably be assigned a lineage due to numerous gappy regions throughout the 

genome. In total, 24 sequences remained.   

 

Phylogenies were then inferred using maximum-likelihood in IQTREE v2.1.3 35 using a 

GTR+R6 model and the -fast option. Mutations of interest were determined using a local 

instance of nextclade-cli v0.14.2 (https://github.com/nextstrain/nextclade). The inferred 

phylogeny was annotated in R v4.04 using ggtree v2.2.436 and rooted on the SARS-CoV-2 

reference sequence, and nodes arranged in descending order. Major lineages were 

annotated on the phylogeny, as well as a heatmap indicating which mutations of interest 

were carried by each viral sequence. 

 

Structural Analyses 

The PyMOL Molecular Graphics System v.2.4.0 (https://github.com/schrodinger/pymol-

open-source/releases) was used to map the location of the two RDB mutants L452R and 
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E484Q onto two previously published SARS-CoV-2 spike glycoprotein structures. Th two 

structures included a closed-conformation spike protein - PDB: 6ZGE 37 and a spike protein 

in open conformation, bound to nAb H4 38.    

 

Serum samples and ethical approval 

Ethical approval for use of serum samples. Controls with COVID-19 were enrolled to the 

NIHR BioResource Centre Cambridge under ethics review board (17/EE/0025).  

 

Cells 

HEK 293T CRL-3216, Vero CCL-81 were purchased from ATCC and maintained in Dulbecco’s 

Modified Eagle Medium (DMEM) supplemented with 10% fetal calf serum (FCS), 100 U/ml 

penicillin, and 100mg/ml streptomycin. All cells were regularly tested and are mycoplasma 

free.  

 

Pseudotype virus preparation 

Plasmids encoding the spike protein of SARS-CoV-2 D614 with a C terminal 19 amino acid 

deletion with D614G, were used as a template to produce variants lacking amino acids at 

position H69 and V70, as well as mutations N439K and Y453F. Mutations were introduced 

using Quickchange Lightning Site-Directed Mutagenesis kit (Agilent) following the 

manufacturer’s instructions. B.1.1.7 S expressing plasmid preparation was described 

previously, but in brief was generated by step wise mutagenesis. Viral vectors were 

prepared by transfection of 293T cells by using Fugene HD transfection reagent (Promega). 

293T cells were transfected with a mixture of 11ul of Fugene HD, 1µg of pCDNAΔ19 spike-

HA, 1ug of p8.91 HIV-1 gag-pol expression vector and 1.5µg of pCSFLW (expressing the 

firefly luciferase reporter gene with the HIV-1 packaging signal). Viral supernatant was 

collected at 48 and 72h after transfection, filtered through 0.45um filter and stored at -80˚C 

as previously described. Infectivity was measured by luciferase detection in target 293T cells 

transfected with TMPRSS2 and ACE2. 

 

Standardisation of virus input by SYBR Green-based product-enhanced PCR assay (SG-PERT) 

The reverse transcriptase activity of virus preparations was determined by qPCR using a 

SYBR Green-based product-enhanced PCR assay (SG-PERT) as previously described39. Briefly, 
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10-fold dilutions of virus supernatant were lysed in a 1:1 ratio in a 2x lysis solution (made up 

of 40% glycerol v/v 0.25% Trition X-100 v/v 100mM KCl, RNase inhibitor 0.8 U/ml, TrisHCL 

100mM, buffered to pH7.4) for 10 minutes at room temperature. 

 

12µl of each sample lysate was added to thirteen 13µl of a SYBR Green master mix 

(containing 0.5µM of MS2-RNA Fwd and Rev primers, 3.5pmol/ml of MS2-RNA, and 

0.125U/µl of Ribolock RNAse inhibitor and cycled in a QuantStudio. Relative amounts of 

reverse transcriptase activity were determined as the rate of transcription of bacteriophage 

MS2 RNA, with absolute RT activity calculated by comparing the relative amounts of RT to 

an RT standard of known activity. 

 

Plasmids for split GFP system to measure cell-cell fusion 

pQCXIP-BSR-GFP11 and pQCXIP-GFP1-10 were from Yutaka Hata 40 Addgene plasmid 

#68716; http://n2t.net/addgene:68716; RRID:Addgene_68716 and Addgene plasmid 

#68715; http://n2t.net/addgene:68715; RRID:Addgene_68715) 

 

Generation of GFP1-10 or GFP11 lentiviral particles 

Lentiviral particles were generated by co-transfection of 293T cells with pQCXIP-BSR-GFP11 

or pQCXIP-GFP1-10 as previously described 41. Supernatant containing virus particles was 

harvested after 48 and 72 hours, 0.45 µm filtered, and used to infect 293T or Vero cells to 

generate stable cell lines. 293T and Vero cells were transduced to stably express GFP1-10 or 

GFP11 respectively and were selected with 2 μg/ml puromycin. 

 

Cell-cell fusion assay  

Cell-cell fusion assay was carried out as previously described 41,42 but using a Split-GFP 

system. Briefly, 293T-GFP1-10 and Vero-GFP11 cells were seeded at 80% confluence in a 24 

multiwell plate the day before. 293T cells were co-transfected with 1.5 µg of spike 

expression plasmids in pCDNA3 using Fugene 6 and following the manufacturer’s 

instructions (Promega). 293T-GFP1-10 cells were then detached 5 hours post transfection, 

mixed together with the Vero-GFP11 cells, and plated in a 12 multiwell plate. Cell-cell fusion 

was measured using an Incucyte and determined as the proportion of green area to total 

phase area. Data were then analysed using Incucyte software analysis. Graphs were 
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generated using Prism 8 software. Furin inhibitor CMK (Calbiochem) was added at 

transfection. 

 

Western blotting 

Cells were lysed and supernatants collected 18 hours post transfection. Purified virions were 

prepared by harvesting supernatants and passing through a 0.45 µm filter. Clarified 

supernatants were then loaded onto a thin layer of 8.4% optiprep density gradient medium 

(Sigma-Aldrich) and placed in a TLA55 rotor (Beckman Coulter) for ultracentrifugation for 2 

hours at 20,000 rpm. The pellet was then resuspended for western blotting. Cells were lysed 

with cell lysis buffer (Cell signalling), treated with Benzonase Nuclease (70664 Millipore) and 

boiled for 5 min. Samples were then run on 4%–12% Bis Tris gels and transferred onto 

nitrocellulose or PVDF membranes using an iBlot or semidry (Life Technologies and Biorad, 

respectively). 

 

Membranes were blocked for 1 hour in 5% non-fat milk in PBS + 0.1% Tween-20 (PBST) at 

room temperature with agitation, incubated in primary antibody (anti-SARS-CoV-2 Spike, 

which detects the S2 subunit of SARS-CoV-2 S (Invitrogen, PA1-41165), anti-GAPDH 

(proteintech) or anti-p24 (NIBSC)) diluted in 5% non-fat milk in PBST for 2 hours at 4°C with 

agitation, washed four times in PBST for 5 minutes at room temperature with agitation and 

incubated in secondary antibodies anti-rabbit HRP (1:10000, Invitrogen 31462), anti-bactin 

HRP (1:5000; sc-47778) diluted in 5% non-fat milk in PBST for 1 hour with agitation at room 

temperature. Membranes were washed four times in PBST for 5 minutes at room 

temperature and imaged directly using a ChemiDoc MP imaging system (Bio-Rad).  

 

 

Serum pseudotype neutralisation assay 

Spike pseudotype assays have been shown to have similar characteristics as neutralisation 

testing using fully infectious wild type SARS-CoV-220.Virus neutralisation assays were 

performed on 293T cell transiently transfected with ACE2 and TMPRSS2 using SARS-CoV-2 

spike pseudotyped virus expressing luciferase43. Pseudotyped virus was incubated with 

serial dilution of heat inactivated human serum samples or convalescent plasma in duplicate 

for 1h at 37˚C. Virus and cell only controls were also included. Then, freshly trypsinized 293T 
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ACE2/TMPRSS2 expressing cells were added to each well. Following 48h incubation in a 5% 

CO2 environment at 37°C, the luminescence was measured using Steady-Glo Luciferase 

assay system (Promega).  
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Figure 1. Context of SARS-CoV-2 B.1.617 variant emerging in India A. Maximum-likelihood phylogeny of lineages bearing
L452R in spike. All sequences with the L452R mutation were downloaded from https://gisaid.org and manually aligned to
reference strain MN908947.3 with mafft. Sequences were de-duplicated and a random subset of 400 global sequences, and
100 USA sequences were then selected with seqtk. All sequence lineages were assigned using pangolin v2.4. Major lineages
are indicated as straight lines adjacent to the heatmap, alongside mutations of current interest. The phylogeny was inferred
with IQTREE2 v2.1.3. B, C, D. The number of B.1617+ cases per month B. in India and C. the UK. D. Table of spike mutations
in B.1.617+ lineages. All data collected on 13thMay 2021.
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Figure 2. SARS-CoV-2 B.1.617.2 infection and transmission to fully vaccinated HCW in a health care centre
located in Delhi, India. A. Case frequencies of SARS CoV-2 lineages over time for A. Delhi and B. fully vaccinated
HCW at a single centre C. A heatmap of pairwise SARS-CoV-2 SNP differences of vaccinated HCW samples. The
B.1.617.2 lineage is in the upper-left quarter, with fewer than 2 SNP difference between them. D. Maximum
likelihood phylogeny of vaccine breakthrough SARS-CoV-2 sequences. Phylogeny was inferred with IQTREE2
with 1000 bootstrap replicates. Rooted on Wuhan-Hu-1 and annotated with the lineage designated by pangolin
v.2.4.2. E. Maximum likelihood phylogeny of vaccine breakthrough SARS-CoV-2 B.1.617.2 sequences in context
of closest Indian B.1.617.2 sequences.
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Figure 3. Presence and impact of mutations L452R and E484Q in the RDB of SARS-CoV-2 spike protein. A. Surface representation of
the spike protein in closed formation (PDB: 6ZGE) in a vertical view with the location of L452 and E484 mutations highlighted as red
and green sphere, respectively. Each monomer in the homotrimer is coloured accordingly B. Surface representation of the same spike
protein in closed confirmation in a ‘top-down’ view along the trimer axis. The residues associated with RBD substitutions L452R, and
E484Q are highlighted in red and green spheres respectively, on a single monomer. C. Ribbon representation of a single monomer of
the same Spike, with residues L452 and E484 highlighted as spheres coloured by element. D. Surface representation of the spike
protein in open formation with neutralising antibody H4 (pink spheres, PDB: 7L58, Rapp et al, 2021) bound to one monomer of the
spike protein. Residues L452 and E484 are indicated with red and green sphere, respectively. Note that E484 is partially occluded by
the bound monoclonal antibody E. Ribbon representation of the interaction between the neutralising antibody H4 and the RBD of a
spike monomer. Residue E484 has direct interaction with the antibody, suggesting that mutations at this site may be involved in
immune escape. Neutralisation by mRNA vaccine-elicited sera E against wild type SARS-CoV-2 spike pseudotyped viruses bearing
RBD mutations observed in B.1.617.1. Serial dilutions of sera used and approx. 250,000 RLU of virus used for each mutant at each
dilution. Geometric Mean Titre (GMT) shown with 95% CI. ** p<0.01.
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Figure 4: Entry efficiency of B.1.617 spike PV in 293T cells over expressing ACE2 TMPRSS2. PV were
generated in 293T cells filtered and then used to infect target cells. Luciferase was measured 48 hours
after infection. Input virus inoculum was corrected for genome copy input using SG-PERT. Mean is plotted
with error bars representing SEM. Data are representative of two experiments.
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Figure 5: B.1.617 spike has accelerated cell-cell fusion activity dependent on furin cleavage at the
polybasic cleavage site. A. Schematic of cell-cell fusion assay. B Reconstructed images
at 10 hours of GFP positive syncytia formation. Scale bars represent 400 mm. C. Quantification of cell-cell
fusion kinetics showing percentage of green area to total cell area over time. Mean is plotted with error
bars representing SEM D. Quantification of cell-cell fusion of the indicated Spike mutants at 10 hours post
transfection. D. Mean is plotted with error bars representing SEM. **p<0.005 Unpaired Student t test. E.
Western blotting of donor cell lysates using an antibody against S2.
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Supplementary figure 1: Entry efficiency of B.1.617 spike PV in CaLu cells. PV were generated in 293T
cells filtered and then used to infect target cells. Luciferase was measured 48 hours after infection.
Infectivity data were corrected for genome copy input using SG-PERT. Mean is plotted with error bars
representing SEM.
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Supplementary Figure 2: P681R accelerates cell-cell fusion activity. A. Quantification of cell-cell fusion
kinetics showing percentage of green area to total cell area over time. Mean is plotted with error bars
representing SEM B. Quantification of cell-cell fusion of the indicated Spike mutants at 10 hours post
transfection. Mean is plotted with error bars representing SEM. **p<0.005 Unpaired Student t test
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