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The APOE locus is strongly associated with risk for developing Alzheimer’s disease and dementia with Lewy bodies. In
particular, the role of the APOE e4 allele as a putative driver of a-synuclein pathology is a topic of intense debate.
Here, we performed a comprehensive evaluation in 2466 dementia with Lewy bodies cases versus 2928 neurologically
healthy, aged controls. Using an APOE-stratified genome-wide association study approach, we found that GBA is associ-
ated with risk for dementia with Lewy bodies in patients without APOE e4 (P = 5.65 � 10 , OR = 3.21, 95% CI = 2.11–4.88),–8

but not with dementia with Lewy bodies with APOE e4 (P = 0.034, OR = 1.87, 95%, 95% CI = 1.05–3.37). We then divided 495
neuropathologically examined dementia with Lewy bodies cases into three groups based on the extent of concomitant
Alzheimer’s disease co-pathology: pure dementia with Lewy bodies (n = 88), dementia with Lewy bodies with intermediate
Alzheimer’s disease co-pathology (n = 66) and dementia with Lewy bodies with high Alzheimer’s disease co-pathology
(n = 341). In each group, we tested the association of the APOE e4 against the 2928 neurologically healthy controls.
Our examination found that APOE e4 was associated with dementia with Lewy bodies + Alzheimer’s disease (P = 1.29 �
10–32, OR = 4.25, 95% CI = 3.35–5.39) and dementia with Lewy bodies + intermediate Alzheimer’s disease (P = 0.0011, OR =
2.31, 95% CI = 1.40–3.83), but not with pure dementia with Lewy bodies (P = 0.31, OR = 0.75, 95% CI = 0.43–1.30).
In conclusion, although deep clinical data were not available for these samples, our findings do not support the notion
that APOE e4 is an independent driver of a-synuclein pathology in pure dementia with Lewy bodies, but rather implicate
GBA as the main risk gene for the pure dementia with Lewy bodies subgroup.
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Introduction
Dementia with Lewy bodies (DLB) is a fatal neurological disease
characterized by variable combinations of fluctuating cognition,
parkinsonism, visual hallucinations and rapid eye movement be-
haviour disorder.1 This form of dementia is among the most com-
mon neurological diseases in the general population, accounting
for �7.5% of all dementia cases.2 There are currently no effective
disease-modifying treatments available and the prognosis is poor.
Because of the significant morbidity associated with this under-
studied disease, the healthcare costs associated with DLB are
among the highest for any age-related disease.3

Clinical, neuropathological and genomic studies have shown
that DLB exists along a continuum involving Alzheimer’s disease
and Parkinson’s disease. The core neuropathological features of
DLB are Lewy bodies and Lewy neurites composed primarily of ab-
normally phosphorylated a-synuclein deposits.1 These pathologic-
al hallmarks are also present in Parkinson’s disease, although they
are typically not as widespread. The majority of DLB patients show
Alzheimer’s disease co-pathology consisting of amyloid-b plaques
and neurofibrillary tangles.4 Our recent genome-wide association
study (GWAS) in Lewy body dementia identified five genome-wide
significant risk loci: GBA, BIN1, TMEM175, SNCA and APOE.5 Of
these, GBA, SNCA and TMEM175 are well-established Parkinson’s
disease risk loci that are crucial in the production and regulation
of a-synuclein.6–8 At the same time, APOE and BIN1 are known
Alzheimer’s disease risk loci that affect the accumulation of both
amyloid-b and neurofibrillary tangles.9,10

Despite these advances, the interplay between Alzheimer’s dis-
ease, Parkinson’s disease and DLB is complex and poorly under-
stood. In particular, the role of the APOE e4 allele as a possible
independent driver of a-synuclein pathology in DLB remains a topic
of intense debate. Two recent studies in human a-synuclein trans-
genic mice expressing different human APOE isoforms found that
the APOE e4 allele regulates synucleinopathies directly and inde-
pendently of amyloid-b deposition.11,12 Post-mortem human studies
also reported that APOE e4 is associated with DLB regardless of the
severity of concomitant Alzheimer’s disease pathology.12–14 In
contrast, other studies found that APOE e4 is only associated with
disease when there is considerable Alzheimer’s disease co-path-
ology.15,16 Notably, a recent population-based study showed that
Lewy body pathology progresses in two distinct patterns and
Alzheimer’s disease co-pathology and APOE e4 are only associated
with one of them.17 If true, this finding implicates the existence of
multiple distinct DLB subtypes. Such disease heterogeneity may ex-
plain the disparate results discovered by previous studies.

Here, we explored the role of APOE e4 in the pathogenesis of
DLB. To do this, we investigated whether APOE e4 is associated
with risk for developing DLB regardless of the presence or absence
of Alzheimer’s disease co-pathology. These analyses are based on

patients diagnosed with DLB, providing adequate power to resolve
this critical aspect of the neurological disease.5

Materials and methods
Sample cohorts and genome sequencing

Fig. 1 shows the analysis pipeline used in this study. We used gen-
omic data from our recently published Lewy body dementia GWAS
based on 2592 Lewy body dementia cases and 4027 neurologically
healthy control subjects.5 All study participants were of European
descent and were diagnosed based on consensus criteria1,18 or were
neurologically healthy individuals as described elsewhere.5 Whole-

genome sequencing was performed on an Illumina HiSeq X Ten
platform using 150-bp paired-end cycles. Alignment (using the
GRCh38DH reference genome) and variant calling followed the
GATK Best Practices.19 Sample-level and variant-level quality con-
trol steps have been described elsewhere.5 This study was approved
by the appropriate institutional review boards of the participating
institutions. All participants or their surrogate decision makers
gave informed consent according to the Declaration of Helsinki.

The APOE-stratified GWASs were performed using samples
selected from the overall cohort of 2466 DLB cases and 2928 neuro-
logically healthy controls. Patients diagnosed with Parkinson’s dis-
ease dementia, controls under the age of 50 years and convenience
controls where the neurological status was unclear were excluded
from the selection process. The pathology subtype analysis
was restricted to the 495 patients who were (i) pathologically
diagnosed as DLB using the McKeith criteria1; and (ii) for whom uni-
formly collected semiquantitative Alzheimer’s disease co-pathology
measures were available.

Neuropathological subgrouping

The 495 definite DLB cases were categorized into three subgroups
based on the severity of the Alzheimer’s disease co-pathology. The
extent of amyloid-b pathology was quantified using the
Consortium to Establish a Registry for Alzheimer’s Disease
(CERAD) scoring20 and neurofibrillary tangle pathology was staged
using the Braak method.21 The three subgroups were: (i) pure DLB,
defined as absent or low Alzheimer’s disease co-pathology (Braak
stages 0–2 and CERAD scores 0–A); (ii) DLB with intermediate
Alzheimer’s disease co-pathology (corresponding to Braak stage 3
and CERAD scores A–C); and (iii) DLB with high Alzheimer’s disease
co-pathology (Braak stages 4–6 and CERAD scores B–C).

Genetic analysis

The e4 APOE allele was identified based on the genotypes at two com-
mon single nucleotide polymorphisms (rs7412 and rs429358). We
assessed the association of the APOE e4 allele (presence or absence)
with DLB by performing two GWASs. In the first GWAS, we evaluated
the DLB cases without any APOE e4 allele and compared them to
neurologically healthy controls without APOE e4. In the second
GWAS, we compared the DLB cases with at least one APOE e4 allele
to healthy controls who were carrying at least one APOE e4 allele.

In addition to the APOE e4-stratified GWASs, we tested the asso-
ciations of the APOE e4 allele with each of the three pathologically
defined subgroups (pure DLB, DLB + intermediate Alzheimer’s dis-
ease and DLB + Alzheimer’s disease) versus all of the controls. We
also tested the associations of the rs2230288 GBA risk allele with
each of the three pathological subgroups versus controls.

Statistical analyses
APOE e4-stratified analyses

GWAS testing and association analysis were performed in PLINK
(version 2.0) using an additive model with a minor allele frequency
threshold of 1%.22 Age, sex and relevant principal components to
account for population stratification were included as covariates.
The top ten principal components were calculated using FlashPCA.
We determined the significant principal components to include in
each analysis using the ‘step’ function (Ripley), as incorporated in
the R (version 3.5.2, https://www.R-project.org) ‘stats’ package. The
principal components included in these analyses were as follows:
(i) principal component 1, 2, 3 and 4 in the APOE e4-negative DLB
cases controls GWAS; and (ii) 1, 2 and 10 in the APOE e4-
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positive DLB cases versus controls GWAS. The threshold for gen-
ome-wide significance was 5.0 � 10–8.

Subgroup analysis

We performed the APOE e4 analysis in DLB subgroups using the
‘glm’ function under a dominant association model, as imple-
mented in the R stats package.23 The principal components
included in the subtype analyses were as follows: (i) 1, 2 and 6 in
the APOE and GBA allele analysis in the pure DLB cohort versus
controls; (ii) 1, 4, 5, 6, 7 and 10 in the APOE and GBA allele ana-
lysis in the DLB + intermediate Alzheimer’s disease cohort ver-
sus controls; and (iii) 1, 2, 3, 4, 5, 6 and 7 in the APOE and GBA
allele analysis in the DLB + Alzheimer’s disease cohort versus
controls. Association results for Bonferroni-corrected for mul-
tiple testing using a P-value threshold of 0.017 (= 0.05/3 groups
tested).

Data availability

Individual-level sequence data are available on dbGaP (accession
number: phs001963.v1.p1). The analysis presented here has not
been previously published elsewhere.

Results
APOE e4-stratified GWAS

We explored the genetic risk factors among DLB patients carrying
and not carrying the APOE e4 allele. To perform this stratified
GWAS, we compared the 1286 DLB cases without APOE e4 to the
2271 controls without APOE e4. The genomic inflation factor k1000

CI = 2.25–5.17; Fig. 2). When we compared the 1180 DLB cases with
APOE e4 to the 657 controls with APOE e4, the GBA locus signal did
not achieve genome-wide significance (P = 0.034, OR = 1.87, 95%
CI = 1.05–3.37), suggesting that GBA is not a major determinant of
disease risk in APOE e4 carriers. However, we noted a subsignifi-
cant association signal within the histamine receptor H1 (HRH1)
gene (rs9858388, P = 2.0 � 10–7, OR = 1.47, 95% CI = 1.27–1.71).
Furthermore, no association signals exceeded the Bonferroni
threshold for multiple testing in the APOE e4-positive GWAS. The
k1000 for this GWAS was 1.012. These findings confirmed the im-
portance of GBA as a significant driver of a-synuclein pathology in
the APOE e4-negative DLB patients.
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Figure 1 Analysis overview. This schematic illustration of the study workflow shows the cohort selection and analysis steps. AD = Alzheimer’s dis-
ease; LBD = Lewy body dementia; iAD = intermediate-level Alzheimer’s disease co-pathology.
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APOE associations with DLB subgroups

Of the 495 DLB cases with available co-pathology measures, 88
(17.8%) were classified as pure DLB cases, 66 (13.3%) cases were
categorized as having intermediate AD co-pathology and 341
(68.9%) were identified as having severe AD co-pathology. Table 1
shows the clinical and demographic details of these subgroups.
Men were overrepresented in the pure DLB group (81%). Only lim-
ited phenotype data were available for these individuals.

APOE e4 was strongly associated with disease in the DLB with
severe Alzheimer’s disease co-pathology subgroup (P = 1.29 � 10–32,
OR = 4.25, 95% CI = 3.35–5.39) and the DLB with intermediate AD co-
pathology subgroup (P = 0.0011, OR = 2.31, 95% CI = 1.40–3.83). In
contrast, APOE e4 was not associated with disease in the pure DLB
cohort (P = 0.31, OR = 0.75, 95% CI = 0.43–1.30). Moreover, DLB
patients with high Alzheimer’s disease co-pathology were more
likely to be homozygous for the APOE e4 allele than the other sub-
groups displaying less severe Alzheimer’s disease co-pathology
[n = 47 (13.8%) in the DLB + Alzheimer’s disease group, n = 2 (3.0%)
in the DLB + intermediate Alzheimer’s disease group and n = 0
(0.0%) in the pure DLB group; Fisher P-value = 4.4 � 10–6], consistent
with dose-dependent effects on disease risk. Taken together, these
findings do not support a role of APOE e4 as an independent driver
of human a-synuclein pathology.

In contrast to the APOE e4 subgroup associations, we found a
statistically significant association of the GBA rs2230288 risk allele
with the pure DLB subgroup (P = 0.0004, OR = 4.52, 95% CI = 1.94–
10.44). Interestingly, we did not identify an association within the
intermediate or high Alzheimer’s disease co-pathology subgroups
(DLB + intermediate Alzheimer’s disease: P = 0.11, OR = 2.67, 95%
CI = 0.80–8.89; DLB + Alzheimer’s disease: P = 0.32, OR = 1.45, 95%
CI = 0.69–3.01). These findings support the existence of distinct
genetic architectures within each DLB subtype.

Discussion
The influence of genetic association signals implicated in Lewy
body dementia on Alzheimer’s disease co-pathology has been
unclear. APOE e4 is the most common genetic risk factor for
late-onset Alzheimer’s disease, and it has also been consistently
the top association signal for Lewy body dementia.5,14,24,25

Controversial evidence exists implicating APOE e4 as an independ-
ent driver of a-synuclein pathology. Here, we show that the associ-
ation of APOE e4 with DLB is dependent on the severity of
Alzheimer’s disease co-pathology, as APOE e4 was associated with
DLB only when there were intermediate or high levels of
Alzheimer’s disease co-pathology. No associations were found for

Figure 2 Miami plot depicting the APOE-stratified GWAS results. The upper panel shows the GWAS results comparing APOE e4-negative DLB cases
with APOE e4-negative controls (n = 1286 cases versus 2271 controls). The bottom panel shows the association test results comparing APOE e4-positive
DLB cases with APOE e4-positive controls (n = 1180 cases versus 657 controls). The x-axis depicts the chromosomal position for 22 autosomes in
hg38 and the y-axis denotes the association P-values on a –log10 scale. The dotted, horizontal line indicates the conservative Bonferroni threshold for
genome-wide significance. Suggestive variants are indicated by orange dots, while red dots highlight genome-wide significant associations.

Table 1 DLB subgroups and demographic characteristics

Pure DLB DLB + intermediate Alzheimer’s disease DLB + Alzheimer’s disease Controls

n 88 66 341 2928
Mean age (SD) 73 (11) 79 (10) 76 (11) 78 (11)
Age range, years 40–95 55–100 39–103 50–110
% Male 81 59 52 46
APOE e4 carriers

Homozygous (%) 0 (0%) 2 (3%) 47 (14%) 42 (1%)
Heterozygous (%) 17 (19%) 25 (38%) 148 (43%) 615 (21%)

GBA rs2230288T carriers (%)a 7 (8%) 3 (5%) 9 (3%) 51 (2%)

aOne pure DLB case was homozygous for the rs2230288T risk allele, while all other GBA risk allele carriers were heterozygous.
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APOE e4 with pure DLB, arguing against the notion that APOE e4 is
an independent driver of a-synuclein pathology.

we did not detect any genome-wide significant loci when examin-
ing DLB cases with APOE e4. Taken together, these findings demon-
strate a clear relationship between GBA and APOE e4-negative DLB,
whereas the association with APOE e4-positive DLB is equivocal.
However, we noticed a subsignificant signal within the HRH1 gene,
encoding the histamine receptor H1 that is widely expressed within
the central nervous system. Histaminergic dysregulation is a crucial
feature of Alzheimer’s disease and DLB,26,27 making HRH1 a plaus-
ible risk gene. However, additional genetic association studies will
be required to determine the importance of this observation.
Furthermore, the rs2230288 variant located within the GBA locus
was associated with pure DLB (P-value = 0.0004, OR = 4.52, 95% CI =
1.95–10.44) but not with DLB with Alzheimer’s disease co-pathology
(P-value = 0.32, OR = 1.45, 95% CI = 0.69–3.01). Overall, these find-
ings suggest the existence of DLB subgroups with distinct genetic
architectures, perhaps hallmarked by the APOE and GBA loci.

Only a limited number of DLB research studies have previously
accounted for the severity of Alzheimer’s disease co-pathology.
While some studies reported the association of APOE with DLB to be
dependent on the presence of Alzheimer’s disease co-pathology,15,16

others did not.12–14 One possible explanation for this discrepancy in
the literature may be the small sample sizes and varying neuro-
pathological definitions for pure DLB. In addition, each study
employed different inclusion and exclusion criteria and methodolo-
gies to group the neuropathological changes. For example, in one of
the previous studies, the aged controls had to be free of cognitive im-
pairment both at study enrolment and at the last evaluation. Such
criteria may have led to a selection bias against APOE e4, and the
results may be attributed to the lack of APOE e4 in cognitively intact
aged individuals rather than its association with DLB. Other co-path-
ologies, such as microvascular disease and TDP-43 inclusions, could
be present in this aged cohort and may explain the disparate results
in the studies. Such co-pathologies were more likely to have emerged
if the patients had survived longer. These data were not available for
the samples that were included in our analysis.

The relationship of APOE to other genetic and non-genetic risk
factors is complex. For example, transgenic mouse models express-
ing the human APOE e4 allele and a pathogenic mutation in SNCA,
encoding the a-synuclein protein, showed increased a-synuclein ag-
gregation.12 However, it is difficult to extrapolate from artificial

sex, polygenic genetic contributions of small effect size, cerebrovas-
cular disease, mitochondrial impairment, neuroinflammation and
dysfunctional lysosomes may interact with APOE, and the outcome
likely depends on the integrated sum of these factors.28 Our study
highlights the value of studying neurological diseases directly in
pathology-derived human tissue as a means to understand the pri-
mary drivers underlying co-pathologies.

Aside from genetic differences, we observed that 81% of the
pure DLB group were male, compared to the DLB + Alzheimer’s
disease group, where the male-to-female ratio was �1. This obser-
vation is in line with previous studies of DLB with varying severity
of Alzheimer’s disease co-pathology.13,14,16 Because all studies,
including ours, have potential selection biases and confounding
factors that affect sex, we cannot conclude that sex influences the
DLB phenotype. However, the consistency with which males form
the majority of pure DLB cases is noteworthy. Interestingly, the
male sex has also been implicated as a risk factor for Parkinson’s
disease with the same neuropathological changes as pure DLB.29

A strength of our study is the availability of neuropathological
data from a large cohort of patients diagnosed with DLB. These data
allowed for a careful exploration of the genetic effects on co-path-
ology. Despite this, the absolute number of our patient collection was
relatively small compared to the larger-scale GWASs that are stand-
ard in the field today. Although interesting, our results must be con-
firmed in more extensive studies that longitudinally collect clinical,
cognitive and neuropathological information, such as quantifications
of TDP-43 co-pathology and microangiopathic changes. Analysis of
such clinical information would provide additional insights into the
genetic factors driving cognitive decline across DLB subtypes and
across males and females. More extensive studies are also required
to determine the relative importance of common variation and rare
mutations in GBA, a locus where the risk is known to be pleomorph-
ic.5 Another limitation of our study is that all participants were indi-
viduals of European ancestry. It will be essential to include diverse
populations in future efforts to obtain a comprehensive understand-
ing of the genetic drivers underlying DLB.

In conclusion, our data show that APOE e4 is not an independ-
ent driver of a-synuclein pathology in DLB. Instead, the severity of
Alzheimer’s disease co-pathology influences the association of
APOE e4. Based on this, it is clear that the severity of Alzheimer’s
disease co-pathology should be considered in future genetic stud-
ies, as missing neuropathological subgroups may obscure associ-
ation signals. Moreover, considering the severity of Alzheimer’s
disease co-pathology may make it easier to determine the manner
in which a-synuclein and Alzheimer’s disease pathology interact
in DLB. The severity of Alzheimer’s disease co-pathology, and the
corresponding underlying genetics, may be used to assign patients
to subgroups, each with different symptoms and each requiring
specific targeted treatments.
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stratified GWAS, we found that the GBA risk variant rs2230288 nearly
reached genome-wide significance when comparing DLB cases
without APOE ɛ4 to healthy controls without APOE ɛ4. In contrast,
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Appendix I
International LBD Genomics Consortium

Full details are provided in the Supplementary material.
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