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C O R O N A V I R U S

Multivalent designed proteins neutralize SARS-CoV-2 
variants of concern and confer protection against 
infection in mice
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New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to arise and prolong the 
coronavirus disease 2019 (COVID-19) pandemic. Here, we used a cell-free expression workflow to rapidly screen 
and optimize constructs containing multiple computationally designed miniprotein inhibitors of SARS-CoV-2. We 
found the broadest efficacy was achieved with a homotrimeric version of the 75-residue angiotensin-converting 
enzyme 2 (ACE2) mimic AHB2 (TRI2-2) designed to geometrically match the trimeric spike architecture. Con-
sistent with the design model, in the cryo-electron microscopy structure TRI2-2 forms a tripod at the apex of 
the spike protein that engaged all three receptor binding domains simultaneously. TRI2-2 neutralized Omicron 
(B.1.1.529), Delta (B.1.617.2), and all other variants tested with greater potency than the monoclonal antibodies 
used clinically for the treatment of COVID-19. TRI2-2 also conferred prophylactic and therapeutic protection 
against SARS-CoV-2 challenge when administered intranasally in mice. Designed miniprotein receptor mimics 
geometrically arrayed to match pathogen receptor binding sites could be a widely applicable antiviral therapeutic 
strategy with advantages over antibodies in greater resistance to viral escape and antigenic drift, and advantages 
over native receptor traps in lower chances of autoimmune responses.

INTRODUCTION
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
continues to cause a global pandemic with more than 300 million 
infections and 5.5 million deaths as of January 2022 (https://covid19.
who.int/). Monoclonal antibodies (mAbs) targeting the SARS-CoV-2 
spike (S) glycoprotein (1) have been an effective treatment for 
improving outcomes for patients with coronavirus disease 2019 
(COVID-19) (2–5), but many are sensitive to viral escape through 
point mutations in their epitopes on the S trimer (6, 7), and producing 

mAbs in sufficient quantities for population-scale use during a global 
pandemic is technically and financially challenging (8). The continued 
emergence of variants of concern (VOCs) jeopardizes the effective-
ness of currently approved mAb treatments and vaccines (9–14). In 
particular, mutations in the rapidly spreading B.1.1.529 (Omicron) 
variant disrupt binding of most receptor binding motif–targeted 
mAbs and have been shown to reduce neutralization potency more 
than 100-fold for five of seven clinical mAbs used for the prophylactic 
or therapeutic treatment of COVID-19 (15–18). Thus, there is an 
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urgent need for interventions whose efficacy is not disrupted by the ob-
served ongoing antigenic drift, as is the case for a few mAbs (19–24).

As an alternative to mAbs, we previously computationally de-
signed two classes of minibinder proteins that block the SARS-CoV-2 
receptor binding domain (RBD) interaction with its host receptor, 
angiotensin-converting enzyme 2 (ACE2) (25). The first class, ex-
emplified by AHB2, adopts a similar binding mode to and incorpo-
rates residues from the main RBD-interacting helix of ACE2 in a 
custom-designed three-helix bundle that has a low overall sequence 
similarity with ACE2. The second class, exemplified by LCB1 and 
LCB3, contains an entirely new designed RBD binding interface. 
These minibinders neutralize the WA1/2020 SARS-CoV-2 virus 
with half-maximal inhibitory concentration (IC50) values in the range 
of 23 pM (LCB1) to 15 nM (AHB2) (25). The designs express at high 
concentrations in Escherichia coli and are highly thermostable (25), 
which could considerably streamline manufacturing and decrease 
the cost of goods for clinical development. LCB1 has demonstrated 
protective activity as both preexposure prophylaxis and postexposure 
therapy in human ACE2 (hACE2)–expressing transgenic mice, 
but mutations in the B.1.351 (Beta) and P.1 (Gamma) VOCs were 
shown to reduce binding potency (26, 27).

Here, we sought to develop constructs containing three minibinder 
domains that could simultaneously engage all three RBDs on a 
single S protein and, by virtue of this multivalent binding, potently 
neutralize SARS-CoV-2 variants. Multivalency can increase the 
apparent affinity for target antigens (28–30), including against 
SARS-CoV-2 (31–36). We considered two classes of constructs. The 
first contain multiple distinct minibinder domains linked together 
to maximize RBD binding avidity; these constructs have the advan-
tages that LCB1 and LCB3 are very high-affinity binders on their 
own, and the three domains contain different sets of contacts with 
the RBD, making escape in principle more difficult (32, 37). The 
second consists of self-assembling homotrimers of minibinders 
geometrically matched to the three RBDs on a single spike; although 
AHB2 is of lower affinity than LCB1 and LCB3, and the sites targeted 
are less diverse than the first class, homotrimers of AHB2 have 
the advantage that the ACE2 binding site is inherently less mutable 
because the virus must bind ACE2 to infect cells (24,  38). We 
describe the design, optimization, and escape resistance of both 
classes of constructs and find that the top constructs have consider-
able promise as potential countermeasures in the ongoing COVID-19 
pandemic.

RESULTS
RBD mutations affect minibinder binding
To determine the potential for mutations to arise that disrupt LCB1 
and AHB2 binding to the RBD, we performed deep mutational 
scans using site saturation mutagenesis of the RBD (38). We found 
that for LCB1, the widely observed K417N mutation results in a 
greater than 10-fold reduction in affinity and the E406W and 
Y453K/R mutations result in a greater than 100-fold reduction in 
affinity (fig. S1). For AHB2, we similarly observed several mutations, 
including K417N, E406W, and Y453K/R, which reduce the affinity 
of the minibinder for the RBD.

Multivalent minibinders bind to SARS-CoV-2 RBDs
To improve the ability of the minibinders to neutralize circulating 
SARS-CoV-2 variants, we developed multivalent versions with 

geometries enabling simultaneous engagement of all three RBDs 
in a single S trimer (1) to increase binding avidity. Multivalent mini
binders might be less sensitive to mutations that would escape bind-
ing of the monovalent minibinders; a 100× reduction in binding 
affinity of a subpicomolar binder would still result in an affinity in a 
therapeutic range in a multivalent construct (39). We also hypothe-
sized that constructs with binding domains containing different sets 
of contacts with the target epitope could prevent escape (32, 37). To 
design multivalent constructs, we started from optimized versions of 
LCB1, AHB2, and LCB3 minibinders (hereafter referred to as mono-
mers MON1, MON2, and MON3, respectively; table S1) (25).

To rapidly prototype multivalent minibinder designs, we devel-
oped a cell-free protein synthesis (CFPS) workflow that combines 
an in vitro DNA assembly step followed by polymerase chain reac-
tion (PCR) to generate linear expression templates that are used to 
drive CFPS and enable rapid prototyping of new minibinder designs 
(fig. S2). The workflow enables assembly and translation of synthetic 
genes and generation of purified protein in as little as 6 hours; is 
compatible with high-throughput, automated experimentation using 
an acoustic liquid handler (Echo 525); and is easily scaled for the 
production of milligram quantities of protein (40, 41). To assess 
multivalent binding, we coupled the workflow to an AlphaLISA 
protein-protein interaction competition assay to enable comparison 
of dissociation rates of the designed proteins against either the 
monomeric RBD or the trimeric HexaPro SARS-CoV-2 S glycoprotein 
(S6P) (42). Because multivalency largely affects dissociation rate 
constants of protein-protein interactions, we reasoned that an in-
solution off-rate screen could distinguish differences between mono- 
and multivalent binding (43). Multivalent minibinders were allowed 
to fully associate with the target protein, then reactions were split in 
two and either 100-fold molar excess of untagged competitor (to 
prevent reassociation), or buffer was added. MON1, MON2, and 
MON3 target overlapping epitopes (25), and thus, mono- or multi-
valent versions of these minibinders were selected as competitors. 
The ratio of the competitor to no-competitor condition measure-
ments was calculated to determine the fraction of the complex 
dissociated (44).

Paralleling previous work where trimeric binders were targeted 
to the sialic acid–binding site on influenza hemagglutinin (30), we 
first designed self-assembling homotrimeric versions of the MON1, 
MON2, and MON3 miniproteins geometrically matched to the 
three RBDs in the S trimer (hereafter referred to as TRI; for example, 
TRI1-1 represents a homotrimer of MON1 with homotrimerization 
domain 1; table S1 and data file S1). We designed and screened 
more than 100 different homotrimeric minibinders, with varied linker 
lengths and homotrimerization domains, using the CFPS workflow. 
We observed that many of the homotrimeric constructs exhibited 
slower dissociation rates than the corresponding monomers; much 
larger effects were observed with dissociation from the S trimer 
than monomeric RBD, consistent with multivalent binding (Fig. 1 
and fig. S3). In total, we tested 11 different oligomerization domains 
and found that 9 of these domains yielded at least one design with a 
linker length that improved dissociation rates on par with the top 
binders (fig. S3). Designs with domains 4 and 11 exhibited slower 
dissociation rates compared to their monomeric counterpart but 
faster than the top designs (fig. S3E); this is likely indicative of an 
inability to simultaneously engage all three target epitopes or disso-
ciation of the oligomerization domains themselves. The top binders 
exhibited little to no dissociation from S trimer after 7 days of 
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incubation with competitor, indicating a likely apparent dissociation 
rate constant of 1 × 10−7 s−1 or slower (Fig. 1B). This is a marked 
improvement, more than four orders of magnitude for the TRI2 
proteins, over the dissociation rate constants of the corresponding 
monomeric minibinders (fig. S4). We selected two trimeric scaffolds, 
the designed two ring helical bundle SB175 (domain 2) and the 
T4 foldon (domain 1) (table S2) (45), to proceed with based on the 
screening results and previous experience with these scaffolds.

Next, we generated two- and three-domain fusions of the 
MON1, MON2, and MON3 minibinders separated by flexible 
linkers (hereafter referred to as FUS; for example, FUS31-P12 rep-
resents a fusion of MON3 to MON1 separated by a 12–amino acid 
proline-alanine-serine (P12) linker; table S1 and data file S1). We 
screened more than 100 different fusions using the CFPS workflow, 
evaluating different minibinder orderings and a range of linker 
compositions and lengths that span the distances between the 
termini of the domains when bound to the “open” and “closed” 
states of the RBD (Fig. 1 and fig. S3, A, B, and F) (1). We evaluated 
both glycine-serine (denoted as G) and proline-alanine-serine (de-
noted as P) linkers (46) and observed similar binding characteristics 
(Fig. 1 and fig. S3). We observed occasional truncation of the G 
linkers during expression and purification by E. coli proteases; this 
was less frequent for the P linkers. FUS31 and FUS231 constructs 
showed slower dissociation against S6P than RBD and exhibited 
slower dissociation than all monomeric minibinders tested, consistent 
with multivalent S6P engagement (Fig. 1). The top binders exhibited 
little dissociation from S6P after 7 days, indicating a likely apparent 
dissociation rate constant of 1 × 10−7 s−1 or slower, representing one 

order of magnitude or greater improvement over the corresponding 
monomeric minibinder dissociation rate constant (fig. S4). Last, 
to determine the potential for low-cost purification by heat treat-
ment, we recombinantly expressed MON1, FUS231-P12, and TRI2-
2 in E. coli. The heat-treated soluble fraction was enriched with the 
expressed minibinder, and contaminating background proteins were 
largely precipitated (fig. S5).

Structural studies of minibinders in complex 
with SARS-CoV-2 S
We next determined how the designed multivalent proteins engage 
multiple RBDs on a single S trimer; multivalent engagement on a 
virion typically requires binding of a single S trimer due to the rela-
tively sparse S distribution (47–49). For some designs, FUS31-G8 
and TRI1-5-G2, for example (table S1), initial screening using 
negative-stain electron microscopy (EM) revealed considerable cross-
linking and aggregation of S trimers upon addition of the constructs 
(fig. S6), consistent with binding to RBDs on different S trimers. 
In contrast, for constructs TRI2-2, FUS231-G10, FUS231-P24, and 
FUS31-G10, we observed less cross-linking, consistent with multi-
valent engagement of a single S trimer for each minibinder. To de-
termine the binding modes of these compounds to the S trimer and 
characterize the structure of the MON2 and RBD interactions at 
high resolution, we carried out cryo-EM characterization of these 
complexes (Fig. 2).

The cryo-EM structures of the TRI2-2, FUS31-G10, and 
FUS231-P24 constructs in complex with S6P were determined at 
resolutions of 3.1, 4.6, and 3.9 Å, respectively (Fig. 2, A to D; figs. S7 
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Fig. 1. Multivalent minibinders exhibit very slow dissociation rates upon binding to the prefusion SARS-CoV-2 S glycoprotein trimer. Dissociation of the minibinder 
construct was monitored by competition with 100-fold molar excess of untagged MON1 using AlphaLISA (means ± SEM; n = 3 technical replicates from a single experiment). 
(A) Dissociation was measured for indicated minibinder constructs complexed with the receptor binding domain of SARS-CoV-2. (B) Dissociation was measured for the 
indicated minibinder constructs complexed with the S trimer (S6P).
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to S10; and table S3), and a negative-stain reconstruction was 
obtained with FUS231-G10 in complex with S6P (Fig. 2E). The 
TRI2-2/S6P cryo-EM structure closely matched the TRI2-2 trimer 
design, with all three RBDs in the open state bound to MON2 
(Fig. 2, A and B, and figs. S7 and S8). In the FUS31-G10 and S6P 
complex, FUS31-G10 is bound to two RBDs adopting an open con-
formation (Fig. 2C and figs. S7 and S9). The distance between the 
two RBDs in the open conformation is shorter in the FUS31-G10 

than in the FUS231-P24 structure (Fig. 2, C and D), suggesting that 
the bound minibinder holds the RBDs together, in agreement with 
the shorter linkers used in the former minibinder construct. In the 
structure, two molecules of FUS31-G10 are bound to a single S trimer, 
with the third RBD occupied by a second FUS31-G10 molecule. In the 
structure of FUS231-P24 bound to S6P, the three RBDs are participat-
ing in complex formation (Fig. 2D and figs. S7 and S10). The limited 
resolution in the region comprising the minibinder-bound RBDs 
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TRI2-2 in complex with the S6P in two orthogonal orientations. (B) A zoomed-in view of the TRI2-2 and RBD complex was obtained using focused three-dimensional 
classification and local refinement. The RBD and MON2 built in the 3.0-Å resolution cryo-EM map are shown in yellow and blue, respectively. (C) A cryo-EM map of 
FUS31-G10 bound to S6P. (D) A cryo-EM map of FUS231-P24 bound to S6P. (E) A negative-stain EM map of FUS231-G10 in complex with S6P. S and minibinder models 
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and linkers precludes definitive assignment of the identity of the 
minibinders at each binding site and their connectivity. The 
distances between the termini of the minibinder domains, how-
ever, are compatible with the computational design models and 
suggestive of engagement of either two (FUS31-G10) or three of 
the RBDs (FUS231-P24) in a single S trimer by the multivalent 
minibinders.

The structure of MON2 in complex with the S trimer has not 
previously been determined. Starting from the TRI2-2/S6P cryo-EM 
data, we improved the RBD/MON2 densities using focused clas-
sification and local refinement, yielding a map at 3.0-Å resolu-
tion, enabling visualization of the interactions formed by MON2 
with the RBD (Fig. 2B). Superimposition of the design MON2 
model to the corresponding cryo-EM structure, using the RBD 
as reference, shows that the MON2 minibinder closely matched the 
design model with backbone C root mean square deviation of 
1.3 Å (fig. S7, E and F). Together with previous structures of MON1 
and MON3 (25), these data illustrate the accuracy with which 
both protein scaffolds and binding interfaces can now be computa-
tionally designed.

Multivalent minibinders enable rapid detection of  
SARS-CoV-2 S protein
Having confirmed the binding mode of the FUS231 proteins by 
cryo-EM, we designed an S trimer sensor, reasoning that the high-
affinity binding of the FUS231 proteins to the S trimer could make 
a useful diagnostic (50). We hypothesized that it would be possible 
to construct a bioluminescence resonance energy transfer (BRET) 
sensor for S trimer, where simultaneous engagement of all three 
minibinders in FUS231 with the S trimer would bring the N and 
C termini close enough together to enable efficient energy transfer. 
Toward this goal, we designed a BRET sensor based on FUS231-P12 
with teLuc and mCyRFP3 fused to the N and C terminus of 
FUS231-P12, respectively (Fig. 3A) (51, 52). Upon binding of the 
sensor protein to a stabilized S protein with two proline mutations 
(S2P) (1, 50), we observed a 350% increase in the 590-nm:470-nm 
BRET ratio, which was not observed when bound to the RBD alone, 
and determined the limit of detection to be 11 pM S2P (Fig. 3, B and C, 
and fig. S11). These results provide further evidence for the proposed 
multivalent binding mode for the FUS231 proteins.

Multivalent minibinders bind tightly to SARS-CoV-2 variants
We next evaluated the resiliency of the binding of multivalent 
minibinders to the previously identified MON1 and MON2 escape 
mutants as well as mutations present in the B.1.1.7 (Alpha), B.1.351 
(Beta), and P.1 (Gamma) SARS-CoV-2 VOCs. We first measured 
the off-rate of the best multivalent minibinders using competition 
AlphaLISA with TRI2-1 against a panel of mutant S glycoproteins 
(Fig. 4A). Multivalent minibinders were allowed to fully associate 
with mutant S trimers and, subsequently, were competed with 
100-fold molar excess of untagged TRI2-1 to measure dissociation 
of the complex. The two-domain fusions (FUS23 and FUS31) did 
not show improved binding to the tested point mutants. The 
three-domain fusions (FUS231) retained binding to the tested 
mutants, indicating that they are more resistant to mutations than 
their monomeric counterparts, although E406W, Y453R, and the 
combination of K417N, E484K, and N501Y mutations (present 
in the B.1.351 S trimer) increased the dissociation rate more than 
100-fold. Consistent with these results, we also observed increased 
dissociation rates for the FUS231 proteins against the B.1.351 and 
P.1 spikes by surface plasmon resonance (SPR) (fig. S12). The TRI1 
and TRI3 homotrimers showed similar mutational tolerance in the 
competition experiment, with the same E406W, Y453R, and B.1.351 
mutations causing increased dissociation rates. In contrast, the 
TRI2 designs showed little dissociation after 24 hours against any 
of the tested S trimer mutants.

We screened the top multivalent minibinders for binding to 
mutant S trimers by an ACE2 competition enzyme-linked immuno-
sorbent assay (ELISA), which correlates with neutralization potency 
(53). The minibinders were preincubated with the S6P variants 
before binding to immobilized ACE2 (Fig. 4B and fig. S13). In line 
with deep mutational scanning data, we observed impaired binding 
to the E406W, K417N, and Y453R mutants in addition to several 
other mutants. Two mutations, Y453F and E484K, improved MON2 
binding, consistent with MON2 mimicry of the ACE2 interaction 
interface (38), despite having low sequence similarity with ACE2 
(fig. S14). Compared to the monovalent minibinders, we observed 
reduced effects of mutations in the competition IC50 values of the 
FUS231 and TRI2 minibinders and, to a lesser extent, of the TRI1 
and TRI3 minibinders against the tested S6P variants, except for 
E406W (Fig. 4B and fig. S13D).
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Multivalent minibinders potently neutralize circulating 
SARS-CoV-2 variants
To investigate the efficacy of the multivalent minibinders for pre-
venting viral infection, we performed neutralization assays with 
the inhibitors using both pseudo-typed lentiviruses and authentic 
SARS-CoV-2 variants (Fig. 4, C to F, and fig. S15). Against pseudo-
viruses displaying S proteins corresponding to the B.1.1.7, B.1.351, 
P.1, B.1.617.1, B.1.617.2 (Delta), and B.1.617.2.1 (Delta plus; AY.1) 
variants, all three monomeric minibinders showed reduced neutral-
ization capacity as compared to the Wuhan-Hu-1 D614G strain; 
in contrast, many of the multivalent minibinders were less affected 
(Fig. 4, C and E, and fig. S15, A and C; an ACE2-overexpressing 
cell line was used for these experiments). The same proteins were 
also evaluated against pseudo-viruses containing the E406W, L452R, 
and Y453F mutations, which again had little impact on neutraliza-
tion for most multivalent minibinders tested (fig. S15, A and C). 
This suggests that the increase in affinity from multivalency improved 
neutralization breadth. The top neutralizing minibinders from this 
screen were tested for neutralization of a panel of authentic SARS-
CoV-2 viruses including a historical WA1/2020 strain, B.1.1.7, 
B.1.526 (Iota), B.1.1.529 (Omicron), B.1.617.1, B.1.617.2, and 
B.1.617.2.1 natural isolates, and chimeric WA1/2020 strains encoding 
S genes corresponding to those of B.1.351 (Wash-B.1.351) and 
P.1 (Wash-P.1) variants. Again, the top candidates maintained 
picomolar-range IC50 values (Fig. 4, D and F, and fig. S15, B and D), 
except for the FUS231 proteins, which did not fully neutralize the 
B.1.1.529 variant in the tested concentration range. The TRI2 pro-
teins maintained potent neutralization across all tested variants, 
notably including the B.1.1.7, Wash-B.1.351, Wash-P.1, B.1.617.2, 
and B.1.1.529 variants. The TRI2 proteins potently neutralized the 
B.1.1.529 variant, whereas many clinical mAbs for the treatment of 
COVID-19 do not (table S4) (15–17).

Although Vero-hACE2–TMPRSS2 (transmembrane serine 
protease 2) cells are useful for neutralization studies, they likely do 
not fully reflect the human cell infectivity. Recent findings highlight 
the relevance of using nontransformed human organoid models for 
SARS-CoV-2 research (54). SARS-CoV-2 can infect and replicate in 
human kidney organoids, specifically targeting kidney tubular epi-
thelial cells expressing ACE2 receptors, responsible for viral entry 
(55, 56). Therefore, we generated kidney organoids from the H9 
human embryonic stem cell line (fig. S16) (57) and evaluated the 
ability of the multivalent minibinders to prevent SARS-CoV-2 viral 
entry and replication. Replication of the B.1.351 variant was inhib-
ited when the virus was preincubated with designed multivalent 
minibinders FUS231-G10 and TRI2-2, but not with MON1 (Fig. 4G). 
Quantitative reverse transcription PCR (RT-qPCR) analysis of viral 
RNA from the kidney organoids also showed reduced SARS-CoV-2 
envelope protein (SARS-CoV-2 E) gene expression in the presence 
of either FUS231-G10 or TRI2-2 (Fig.  4H). Thus, the designed 
multivalent minibinders are potent neutralizers of the B.1.351 
variant in a human organoid system.

Multivalent minibinders resist viral escape
Given the promising data showing that multivalent minibinders 
can neutralize SARS-CoV-2 VOCs, we tested the multivalent 
minibinders for resistance against viral escape mutations in the 
S trimer (Fig. 5, A and B) (6). Plaque assays were performed with 
a vesicular stomatitis virus (VSV)–SARS-CoV-2 S chimera on 
Vero CCL-81 cells, with minibinders included in the overlay to halt 

spread of nonresistant viruses. In positive control wells, inclusion in 
the overlay of 2B04, a potent neutralizing antibody targeting the 
RBD (6, 58–60), resulted in multiple escape mutants in each plate 
similar to previously reported escape mutants (Fig. 5A) (6). In con-
trast, for both FUS231-P12 and TRI2-2, escape mutants were not 
isolated in 36 replicate wells for each protein (fig. S17). These data 
indicate that both the FUS231-P12 and TRI2-2 proteins are more 
difficult to escape than 2B04. Given the known mutation rate of 
the VSV RNA polymerase L (61) and the number of viral particles 
screened (table S5), the screened pool of viral mutants contains 34 
to 88% of the possible single–amino acid substitutions and 0.4 to 
9.6% of the double amino acid substitutions within the region of the 
RBD that contacts the minibinders. Together with the results of 
the single-site saturation mutagenesis studies for the monovalent 
minibinders (fig. S1), these findings indicate that at least two or 
more mutations in the RBD are likely necessary to escape binding of 
the multivalent minibinders.

Multivalent minibinder confers protection in  
hACE2-expressing transgenic mice
To determine whether the multivalent minibinders can prevent or 
treat SARS-CoV-2 infection in vivo, we performed preexposure 
prophylaxis or postexposure therapy studies in highly susceptible 
K18-hACE2 transgenic mice (62) with TRI2 multivalent minibinders, 
which retained the most consistent binding to all S trimer variants 
tested. For prophylaxis, a single 50-g dose (about 2.5 mg/kg) of 
TRI2-1 or TRI2-2 was administered directly to the nasal cavity 
(intranasal administration) 1 day before inoculation with 103 focus-
forming units (FFU) of the indicated SARS-CoV-2 VOCs (Fig. 6A). 
In all cases, intranasal administration of TRI2-1 or TRI2-2 protected 
mice against SARS-CoV-2–induced weight loss (Fig. 6B). At 6 days 
after infection, viral burden in tissues was reduced in almost all pri-
mary (lung and nasal wash) and secondary sites (heart, spleen, and 

A

B

No inhibitor FUS231-P12 TRI2-22B04 (NAb)

Wells
screened

4
36
36

Inhibitor
2B04 (NAb)
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TRI2-1
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24
0
0

Fig. 5. Top multivalent minibinder candidates are resistant to viral escape. 
(A) Plaque assays were performed to isolate VSV-SARS-CoV-2 S chimera virus escape 
mutants against a control neutralizing antibody (2B04) and the FUS231-P12 and 
TRI2-2 multivalent minibinders. For each inhibitor tested, Vero CCL-81 cells were 
incubated with VSV-SARS-CoV-2 S chimera virus for 1 hour, followed by addition of 
the inhibitor protein at a fully neutralizing concentration and further incubation to 
allow for replication and spread of resistant viruses. Thirty-six independent selections 
were carried out for each minibinder compound in a single experiment; representative 
examples are shown in the images. Small plaques are indicative of inhibited viral 
spreading and large plaques, highlighted by black arrows, and are indicative of 
viral escape mutant spreading. (B) Results of the viral escape screen. NAb, neutraliz-
ing antibody.
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Fig. 6. Top multivalent minibinder candidates protect mice from SARS-CoV-2 challenge. (A) K18-hACE2 transgenic mice (n = 6 from two independent experiments) 
were dosed with 50 g of the indicated minibinder by intranasal administration (50 l in total) 24 hours before (D − 1) infection with 103 focus-forming units (FFU) of 
SARS-CoV-2 variants B.1.1.7, Wash-B.1.351, or Wash-P.1 on day 0. (B) Daily weight change after inoculation. Data are presented as means ± SEM. Data were analyzed by a 
two-way ANOVA with Sidak’s posttest; **P < 0.01, ***P < 0.001, and ****P < 0.0001 as compared to the control minibinder. (C) At 6 days postinfection (dpi), animals 
(n = 6 from two independent experiments) were euthanized and analyzed for SARS-CoV-2 viral RNA by RT-qPCR in the lung, heart, spleen, brain, and nasal wash. Horizontal 
bars indicate the median; dashed lines represent the limit of detection. Data were analyzed by a Kruskal-Wallis test with Dunn’s post hoc analysis; ns, not significant. 
*P < 0.05, **P < 0.01, and ***P < 0.001. (D) K18-hACE2 transgenic mice (n = 6 from two independent experiments) were dosed with 50 g of the indicated minibinder by 
intranasal administration (50 l in total) 24 hours after (D + 1) infection with 103 FFU of the SARS-CoV-2 Wash-B.1.351 or B.1.617.2 variant on day 0. (E) Daily weight 
change after inoculation. Data are presented as means ± SEM. Data were analyzed by two-way ANOVA with Sidak’s post test; **P < 0.01, ***P < 0.001, and ****P < 0.0001. 
(F) At 6 dpi (B.1.351) or 7 dpi (B.1.617.2), animals (n = 6 from two independent experiments) were euthanized and analyzed for SARS-CoV-2 viral RNA by RT-qPCR in the 
lung, heart, spleen, brain, and nasal wash. Horizontal bars indicate the median; dashed lines represent the limit of detection. Data were analyzed by a two-tailed 
Mann-Whitney test; *P < 0.05 and **P < 0.01.
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brain) of viral replication in TRI2-1– and TRI2-2–treated animals 
(Fig. 6C). To determine the therapeutic potential of TRI2-2, we 
inoculated K18-hACE2 mice with 103 FFU of Wash-B.1.351 (beta) or 
B.1.617.2 (delta) and, 1 day later, administered a single 50-g dose of 
minibinder intranasally (Fig. 6D). Treatment with TRI2-2 protected 
against weight loss and reduced viral burden in all tissues except 
nasal washes (Wash-B.1.351) or the spleen (B.1.617.2) (Fig. 6, E and F). 
TRI2-2 therapy given 24 hours after inoculation reduced infectious 
virus titers in the lungs of Wash-B.1.351– and B.1.617.2-infected 
mice (fig. S18). We determined the pharmacokinetics of TRI2-2 
after intranasal administration by quantitative competition ELISA.  
Substantial concentrations of TRI2-2 were detected in the lung 
lysate and serum 48 hours after administration (fig. S19) but was 
too low for confident quantification in nasal turbinates after the 
first time point and in nasal washes at all time points. These results 
indicate that intranasal administration of TRI2-1 or TRI2-2 confers 
protection against SARS-CoV-2 infection as both preexposure pro-
phylaxis and postexposure therapy in a stringent model of disease.

DISCUSSION
Both strategies for generating multivalent S protein binders from 
miniproteins, self-assembling homotrimers (TRI) and multidomain 
fusions (FUS), yielded designs with improved affinity, neutralization 
of current and historical VOCs, and resistance to escape mutants 
over their monovalent counterparts (25, 26). The TRI2 proteins 
maintained the strongest binding across all S trimer variants tested, 
likely because MON2 is an ACE2 mimic, similar to the recently 
reported S2K146 mAb (15, 24). This combination of trivalency and 
receptor mimicry could be a useful general approach for combating 
viral escape and antigenic drift (15, 24, 36, 53, 63, 64).

The designs also have potential advantages as therapeutics over 
ACE2 receptor traps and mAbs. When compared to receptor traps 
(55, 65–67), TRI2-2 has a low risk of eliciting host-directed anti-
ACE2 responses due to low-sequence similarity between MON2 
and ACE2. On a per mass basis, the TRI2 proteins are more potent 
neutralizers than all currently authorized mAbs for the treatment of 
COVID-19 (15, 16), and, unlike most clinical mAbs, they maintain 
activity against the Omicron variant. The multivalent minibinders 
are amenable to large-scale production in microorganisms such as 
E. coli, making them more cost-effective to manufacture than mAbs 
(8). Furthermore, their small size and stability may enable direct 
nebulization into the human upper respiratory tract (3, 68–70), a 
strategy that could increase accessibility for patients over the typical 
intravenous or subcutaneous routes used for administering neutral-
izing mAbs.

The high potency of the multivalent constructs, particularly 
TRI2-2 against Omicron, Delta, and the other tested VOCs, makes 
them promising candidate SARS-CoV-2 therapeutics, and they are 
currently undergoing further preclinical development and investi-
gational new drug–enabling studies. These efforts will address lim-
itations in our current study. First, antidrug antibodies are a concern 
with nonhuman proteins, and although MON1 and other minibinders 
(26, 71) elicit little or no immune response, additional studies are 
required to determine the immunogenicity of the multivalent con-
structs. Second, it will be important to assess the pharmacokinetics 
after different modes of administration; in humans, it may be nec-
essary to distribute the compound deeper into the respiratory system 
for postinfection efficacy. Third, as with any new drug candidate 

going through the drug development pipeline, it will be necessary to 
assess its stability as well as its potency and toxicity after prolonged 
administration.

In summary, our integration of structure-guided computational 
protein design, cell-free DNA assembly, cell-free expression, and a 
competition-based off-rate screen enabled the rapid design and 
optimization of S trimer–engaging multivalent minibinders. Scaling 
cell-free expression to manufacture milligram quantities of endotoxin-
free protein for cell-based neutralization assays further reduced the 
time required to evaluate lead molecules. The pipeline has direct 
relevance to diagnostics as well; the FUS231-based BRET sensor is 
easy to use, fast, and has the potential to be less expensive than 
state-of-the-art lateral flow assay–based antigen tests (72, 73). Our 
integrated computational and experimental pipeline should enable 
the rapid generation of potent protein-based medical countermeasures 
and diagnostic reagents for newly emerging pathogens.

MATERIALS AND METHODS
Study design
The objective of this study was to design and evaluate multivalent 
minibinders that neutralize SARS-CoV-2 variants containing muta-
tions within the RBD. At the outset, we hypothesized that multivalency 
would overcome mutations that reduce binding for individual 
monomeric minibinders. Designed proteins were evaluated in 
controlled laboratory experiments, first using biophysical methods 
with purified proteins (AlphaLISA and ELISA competition assays), 
followed by in vitro methods requiring cell culture (pseudo-virus 
and authentic virus neutralization assays). The top candidates from 
neutralization assays were screened by EM for cross-linking multiple 
S trimers, and the candidates that were found to minimally cross-
link S trimers were subjected to structural analysis by cryo-EM. The 
most promising proteins were evaluated in vivo in mice. In all studies 
where cell lines were used, the cell line is noted in the cell lines and cell 
culture section. The total number and type of experimental replicates 
is noted in each figure legend. Details on the in vivo mouse study 
compliance with best practices can be found in the Materials and 
Methods section labeled mouse studies. No sample size calculations 
were performed to power each in vivo study. Instead, sample sizes 
and study end points were determined on the basis of previous 
in vivo virus challenge experiments. For all other experiments, sam-
ple size was selected on the basis of previous literature and previous 
experience. In animal studies, mice were randomly assigned to the 
control and treatment groups. Animal caretakers and researchers 
were not blinded to the study groups or during the assessment of 
the outcomes. Data that underlie the results reported in this article 
can be found in data files S2 and S3 and in the deposited data listed 
in the Data and Materials Availability statement.

Statistical analysis
Statistical significance was determined by a P < 0.05 using the 
GraphPad Prism 9 software. Only nonparametric tests were used 
throughout this article. Analysis of mouse weight changes was per-
formed using a two-way analysis of variance (ANOVA) with Sidak’s 
posttest for multiple comparisons. Statistical analysis of viral load 
between two groups was performed using either a Kruskal-Wallis 
test with Dunn’s post hoc analysis for multiple comparisons or a 
two-tailed Mann-Whitney test as noted in the corresponding fig-
ure captions.
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Making multivalent minibinders
Many types of SARS-CoV-2–neutralizing therapeutics have been developed, with antibodies and angiotensin-
converting enzyme 2 decoys being the most common. However, other approaches merit investigation, particularly
because variants of concern evade existing therapeutics. Here, Hunt et al. developed and produced multivalent
minibinders that recognize the receptor binding domain (RBD) of SARS-CoV-2. One homotrimeric minibinder,
TRI2-2, formed a tripod structure that interacted with all three RBDs of the spike trimer. TRI2-2 neutralized SARS-
CoV-2 variants of concern, including omicron, and conferred protection against SARS-CoV-2 challenge in mice
prophylactically and therapeutically. Together, these data support further investigation into multivalent minibinders as
therapeutic agents for SARS-CoV-2.
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